California Regional Water Quality Control Board Santa Ana Region May 22, 2009 Item: 7* Subject: Consideration of Approval of the Watershed-Wide Nutrient Monitoring Plan Submitted in Compliance with the Big Bear Lake Nutrient Total Maximum Daily Load (TMDL) for Dry Hydrological Conditions Specified in the Water Quality Control Plan for the Santa Ana River Basin – Resolution No. R8- 2009-0043 #### **DISCUSSION** On April 21, 2006, the California Regional Water Quality Control Board, Santa Ana Region (Regional Water Board), adopted Resolution No. R8-2006-0023, amending the Water Quality Control Plan for the Santa Ana River Basin (Basin Plan). The amendment incorporates into Chapter 5, "Implementation" of the Basin Plan a nutrient Total Maximum Daily Load (TMDL) for Big Bear Lake for Dry Hydrological Conditions, (hereinafter referred to as the "Big Bear Lake Dry Nutrient TMDL, or TMDL"). The TMDL was approved by the State Water Resources Control Board (State Water Board) on April 3, 2007 (Resolution No. 2007-0013) and the California Office of Administrative Law (OAL) on August 21, 2007. On September 25, 2007, the U.S. Environmental Protection Agency, Region IX, approved the Big Bear Lake Dry Nutrient TMDL. The purpose of the TMDL is to ensure attainment of water quality standards (beneficial uses, water quality objectives and the anti-degradation policy) in Big Bear Lake, which is impaired due to excessive levels of phosphorus¹. As discussed in the Staff Report on the Nutrient TMDLs for Big Bear Lake (June 2005), there were insufficient watershed and in-lake nutrient data to allow development of TMDLs, load allocations (LAs), and wasteload allocations (WLAs) for average and/or wet hydrological conditions, therefore the TMDL is specific to dry hydrological conditions. The Big Bear Lake Nutrient TMDL required specific dischargers to submit by November 30, 2007, a proposed nutrient monitoring plan for the Big Bear Lake watershed. The purpose of the Big Bear Lake watershed-wide nutrient monitoring program is to allow evaluation of compliance with the WLAs and LAs specified in the TMDL, and to facilitate refinement of the watershed-wide water quality model that would be used for TMDL revision. In compliance with the TMDL requirements, on November 30, 2007, the Big Bear Lake TMDL Task Force submitted for Regional Board approval a proposed Big Bear Lake Watershed-wide Nutrient Monitoring Plan. The TMDL Task Force revised the November 30, 2007 submittal, based on Board staff comments, and submitted a revised proposed Big Bear Lake Watershed-wide Nutrient Monitoring Plan on June 26, 2008. At the July 1, 2008 TMDL Task Force There is evidence that nitrogen may also be a limiting nutrient under certain circumstances and that control of nitrogen inputs may also be necessary to address beneficial use impairment in Big Bear Lake. To address data and analytical model limitations, the TMDL implementation program requires the collection and evaluation of nitrogen data that will allow evaluation of compliance with the established TIN water quality objective and to support future revision of the TMDL to include nitrogen, if and as necessary. meeting, the Task Force identified additional monitoring strategies that should be incorporated in the watershed-wide nutrient monitoring plan. The proposal was refined and the final monitoring plan was submitted on May 4, 2009. The TMDL Task Force is comprised of all named dischargers in the TMDL, including the following: City of Big Bear Lake, County of San Bernardino, California Department of Transportation, the United States Department of Agriculture-Forest Service, the San Bernardino County Flood Control District, and Big Bear Mountain Resorts. In addition, the Big Bear Municipal Water District, the agency that manages Big Bear Lake, also serves on the TMDL Task Force. The Santa Ana Watershed Project Authority (SAWPA) serves as Task Force administrator. The TMDL specifies that the monitoring plan is to be implemented immediately upon Regional Board approval. The proposed Big Bear Lake Watershed-wide Nutrient Monitoring Plan, submitted by the Big Bear Lake TMDL Task Force, is attached to tentative Resolution No. R8-2009-0043. Staff have reviewed the proposed monitoring program and finds that the proposed watershed-wide nutrient monitoring plan satisfies the Nutrient TMDL Monitoring Program requirements. The Big Bear Lake TMDL Task Force will submit a Surface Water Ambient Monitoring Program (SWAMP) comparable Quality Assurance Project Plan (QAPP) that provides specific detailed sampling and analysis procedures and protocols within 30 days of Regional Board approval of the monitoring plan. The Nutrient TMDL also specifies dates for reporting the results of the monitoring program by the Task Force. An annual report of the monitoring program results is to be submitted by February 15th of each year, beginning in 2009. The Big Bear Lake Nutrient TMDL for Dry Hydrologic Conditions also requires the submittal of a lake management plan to allow identification of a coordinated and comprehensive strategy for management of the lake and surrounding watershed to address restoration and protection of the lake's beneficial uses. This plan will include a plan and schedule for updating existing watershed and lake models; a plan and schedule for reducing nutrients in lake sediment; and an aquatic plant management plan. The TMDL Task Force has submitted a lake management plan proposal, however the proposal is still in the process of being refined and will be brought to the Regional Board for consideration at the earliest opportunity. #### STAFF RECOMMENDATION Staff recommends the adoption of Resolution No. R8-2009-0043, approving the Big Bear Lake Watershed-wide Nutrient Monitoring Plan as submitted by the TMDL Task Force and shown in the attachment to the Resolution. # California Regional Water Quality Control Board Santa Ana Region #### **Resolution No. R8-2009-0043** Resolution Approving the Big Bear Lake Watershed-wide Nutrient Monitoring Plan Submitted by the Big Bear Lake TMDL Task Force Pursuant to the Big Bear Lake Nutrient Total Maximum Daily Load for Dry Hydrologic Conditions Specified in the Water Quality Control Plan for the Santa Ana River Basin **WHEREAS**, the California Regional Water Quality Control Board, Santa Ana Region (hereinafter Regional Water Board) finds that: - 1. An updated Water Quality Control Plan for the Santa Ana River Basin (Basin Plan) was adopted by the Regional Board on March 11, 1994, approved by the State Water Resources Control Board (SWRCB) on July 21, 1994, and approved by the Office of Administrative Law (OAL) on January 24, 1995. - 2. An amendment to the Basin Plan to incorporate the Big Bear Lake Nutrient Total Maximum Daily Load (TMDL) for Dry Hydrologic Conditions was approved by the Regional Board on April 21, 2006, by the SWRCB on April 3, 2007, by the Office of Administrative Law on August 21, 2007, and by the U.S. Environmental Protection Agency on September 25, 2007. - 3. The Big Bear Lake Nutrient TMDL for Dry Hydrologic Conditions was developed in accordance with Clean Water Act Section 303(d) and the California Water Code, Division 7, Chapter 4, Article 3, Section 13240 *et seq.* The amendment is incorporated into Chapter 5 "Implementation," of the Basin Plan. - 4. Responsible agencies and dischargers in the Big Bear Lake watershed have formed a Big Bear Lake TMDL Task Force (TMDL Task Force). The TMDL Task Force members are working jointly to implement requirements of the Big Bear Lake Nutrient TMDL. TMDL Task Force members include the following agencies/parties: City of Big Bear Lake, County of San Bernardino, California Department of Transportation, the United States Department of Agriculture-Forest Service, the San Bernardino County Flood Control District, Big Bear Mountain Resorts, and the Big Bear Municipal Water District. - 5. The Big Bear Lake Nutrient TMDL, Tasks 4.1 and 4.2 Nutrient Water Quality Monitoring Program requires the submittal of an in-lake monitoring plan and a watershed-wide monitoring plan. The TMDL requires that these proposed monitoring programs include tasks to provide data necessary to do the following: determine the sources of phosphorus; develop TMDLs under other hydrologic conditions; evaluate compliance with numeric targets as specified in the TMDL; evaluate compliance with the wasteload and load allocations as specified in the TMDL; and facilitate the review and update of the Big Bear Lake Nutrient TMDL. - 6. The Big Bear Lake Nutrient TMDL, Tasks 4.1 and 4.2 Nutrient Water Quality Monitoring Program – also requires that the monitoring plans include tasks to determine compliance with the existing total inorganic nitrogen (TIN) water quality objective specified in the Basin Plan for Big Bear Lake and to allow development of a nitrogen TMDL, wasteload allocations and load allocations in the future. - 7. The TMDL requires implementation of the monitoring plans upon Regional Board approval. - 8. In compliance with the Big Bear Lake Nutrient TMDL Task 4.1, the TMDL Task Force submitted a proposed Big Bear Lake Watershed-wide Nutrient Monitoring Plan, dated November 30, 2007, for Regional Board approval. The TMDL Task Force revised the November 30, 2007 submittal, based on Board staff comments, and submitted a revised proposed Big Bear Lake Nutrient TMDL Watershed-wide Monitoring Plan on June 26, 2008. At the July 1, 2008 TMDL Task Force meeting, the Task Force identified additional monitoring strategies that should be incorporated in the watershed-wide monitoring plan. The final revised Big Bear Lake Watershed-wide Nutrient Monitoring Plan was submitted on May 4, 2009, for Regional Board review and approval. - 9. In compliance with the Big Bear Lake Nutrient TMDL Task 4.2, the TMDL Task Force submitted a proposed Big Bear Lake In-lake Nutrient Monitoring Plan dated November 30, 2007, for Regional Board review and approval.
The plan was approved at the July 18, 2008 Board meeting under Resolution No. R8-2008-0070. - 10. Regional Board staff have reviewed the proposed Big Bear Lake Watershed-wide Nutrient Monitoring Plan and finds that it complies with the applicable requirements of the Big Bear Lake Nutrient TMDL specified in the Basin Plan. #### NOW, THEREFORE, BE IT RESOLVED THAT: - 1. The Regional Board approves the Big Bear Lake Watershed-wide Nutrient Monitoring Plan as shown in the attachment to the Resolution. - 0 - 2. The Big Bear Lake Watershed-wide Nutrient Monitoring Plan complies with the applicable requirements of the Big Bear Lake Nutrient TMDL specified in the Basin Plan. - 3. The Members of the Big Bear Lake TMDL Task Force are in compliance with Task 4.1 of the Big Bear Lake Nutrient TMDL. - 4. The Big Bear Lake Watershed-wide Nutrient Monitoring Plan schedule shown in the attachment to this Resolution must be implemented upon Regional Board approval. - 5. A Quality Assurance Project Plan (QAPP) that is comparable with the Surface Water Ambient Monitoring Program (SWAMP) protocols must be submitted no later than June 22, 2009. - 6. The Regional Board's Executive Officer is hereby delegated authority to approve subsequent revisions to the plan and schedule set forth in the attachment to the Resolution. - I, Gerard J. Thibeault, Executive Officer, do hereby certify that the foregoing is a full, true and correct copy of a resolution adopted by the California Regional Water Quality Control Board, Santa Ana Region, on May 22, 2009. Gerard J. Thibeault Executive Officer & Thileand IN WITNESS WHEREOF, the PARTIES hereto have executed this Agreement entitled "COOPERATIVE AGREEMENT FOR THE NEWPORT BAY WATERSHED AND THE CENTRAL WATERSHED MANAGEMENT AREA THIRD AMENDMENT AND FULL RESTATEMENT OF COOPERATIVE AGREEMENT" as of the day and year first above written. CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD, SANTA ANA REGION Gerard J. Thibeault Executive Officer APPROVED AS TO FORM David Rice Legal Counsel # **Attachment to Resolution** R8-2009-0043 # BIG BEAR LAKE NUTRIENT TMDL COMPLIANCE PROGRAM WATERSHED-WIDE MONITORING PLAN Prepared for Big Bear Lake Nutrient TMDL Task Force May 2009 # TABLE OF CONTENTS | LIST OF FIGURES | | |--|----| | LIST OF TABLES | II | | 1. INTRODUCTION | 1 | | DATA QUALITY OBJECTIVES 2.1 Big Bear Lake Watershed-Wide Nutrient Monitoring Plan: | | | 3. MONITORING PROGRAM DESIGN 3.1 Sampling Locations. 3.2 Analytical Parameters. 3.3 Sampling Schedule. 3.4 Changes to the Sampling Design and Schedule. 3.5 Sampling Protocols. 3.6 Data Management. 3.7 Reporting. 3.8 Period of Performance. 3.9 Responsible Parties. | | | 4. FIELD METHODS AND PROCEDURES 4.1 Water Quality Sample Types 4.2 Tributary Water Quality Sampling Parameters. 4.3 Tributary Flow Monitoring Stations. 4.4 Sample Bottles and Labels 4.5 Assignment of Sample Numbers 4.6 Field Data Sheets 4.6.1 Watershed-wide Monitoring Field Data Sheets 4.6.2 Chain of Custody Forms 4.7 Sample Handling and Transport 4.8 Storm Event Definition 4.9 Site Inaccessibility Issues | | | 5. QUALITY ASSURANCE/QUALITY CONTROL | 22 | | APPENDIX ASampling Forms and Example COC | A | | APPENDIX BStandard Operating ProceduresSOP 11-4 Big Bear Lake Tributary Water Quality Sampling SOP and Record | B | | SOP 15-1 Big Bear Lake Horiba Instrument Maintenance SOP and Record SOP 16-1 Big Bear Lake Horiba Instrument Calibration SOP and Record | | | | | |--|----|--|--|--| | | | | | | | LIST OF FIGURES | | | | | | Figure 1. Sampling Locations in Big Bear Lake Watershed | 8 | | | | | | | | | | | LIST OF TABLES | _ | | | | | Table 1-1. Projects Designed to Restore and Protect Beneficial Uses in Big Bear Lake | 2 | | | | | Table 2-1 Data Quality Objectives for Conventional Water Quality Parameters (Field Monitoring*) | | | | | | Table 2-2 Data Quality Objectives for Water Quality Analyses (Laboratory) | 5 | | | | | Table 2-2 Data Quality Objectives for Water Quality Analyses (Laboratory) Cont | 6 | | | | | Table 3-1 Water Quality and Sediment Sampling Locations, Parameters, & SOPs | 7 | | | | | Table 3-2 Analytical Methods for Water Quality Parameters (Field and Laboratory) | 9 | | | | | Table 3-3: Sampling Schedule to Characterize Water Quality of Runoff in Watershed | | | | | | Table 3-4. Important Contact Information | 14 | | | | | Table 4-2 Water Quality Sample Container, Preservation, & Holding Time Requirements | 18 | | | | | Table 4-3. Sample Assignment Numbers | | | | | | Table 4-4. Sample Drop Off Location/Responsible Staff | 21 | | | | # BIG BEAR LAKE NUTRIENT TMDL WATERSHED-WIDE MONITORING PLAN #### 1. INTRODUCTION # 1.1 Background Big Bear Lake rests 7,000 feet above sea level in the San Bernardino mountains of southern California. When full, the lake covers approximately 3,000 surface acres and holds more than 72,000 acre-feet of water. On average, the lake is about 30 feet deep and provides habitat for numerous fish and other aquatic organisms. Bald eagles are known to roost in the area and forage in the lake for food. The 25,000 acre watershed surrounding Big Bear Lake is largely comprised of undeveloped national forest lands. However, a thriving small community of 15,000 people has grown up along the south shore to support the nearly 6 million tourists who visit the City of Big Bear Lake each year. These folks come to enjoy fishing, boating, water-skiing and swimming during the summer and snow-skiing, snow-boarding, tubing and sledding at the nearby resorts in the winter. Because the local economy is based almost entirely on tourism, maintaining the health and integrity of Big Bear Lake is high priority for the people who live and work in the area. Several years ago, the Santa Ana Regional Water Quality Control Board (Regional Board) added Big Bear Lake and three of its major tributaries to California's list of impaired water bodies due to elevated levels of nitrogen and phosphorus measured in the lake and tributaries¹. These chemicals act as fertilizers to stimulate excess algae growth and aquatic weed infestation. This, in turn, can cause fish kills by reducing dissolved oxygen and out-compete native aquatic plant habitat. The weeds and algae also interfere with recreational uses in and on the water. Although nitrogen and phosphorus occur naturally in runoff from the surrounding forest to the lake, human development often increases the concentration of these nutrients. Consequently, in 2006, the Regional Board adopted a Total Maximum Daily Load (TMDL) to regulate nutrient concentrations and prevent further impairment of water quality in Big Bear Lake². Initially, the TMDL sets targets for the total phosphorus loads that can flow into Big Bear Lake during relatively dry years. However, as more and better data becomes available, the Regional Board intends to develop a TMDL to control nutrient loads during years of moderate and high precipitation. To achieve these goals, the Regional Board directed local stakeholders to prepare and submit a watershed-wide nutrient Monitoring Plan³. This document is intended to fulfill that requirement. ¹ See Clean Water Action Section 303(d) List of Water Quality Limited Segments in California (http://www.waterboards.ca.gov/tmdl/303d_lists.html) ² California Regional Water Quality Control Board #8 – Santa Ana Region. Resolution No. R8-2006-0023. Resolution Amending the Water Quality Control Plan for the Santa Ana River Basin to Incorporate a Nutrient Total Maximum Daily Load (TMDL) for Dry Hydrological Conditions for Big Bear Lake. April 21, 2006. ³ California Regional Water Quality Control Board #8 – Santa Ana Region. Attachment to Resolution No. R8-2006-0023. Resolution Amending the Water Quality Control Plan for the Santa Ana River Basin to California Regional Water Quality Control Board #8 – Santa Ana Region. Attachment to Resolution No. R8-2006-0023. Resolution Amending the Water Quality Control Plan for the Santa Ana River Basin to Incorporate a Nutrient Total Maximum Daily Load (TMDL) for Dry Hydrological Conditions for Big Bear Lake. April 21, 2006. See Task 4.1 on page 10 of 18. # 1.2 Purpose In the TMDL, the Regional Board set forth four specific objectives for the Watershed-Wide Monitoring Plan: - 1. To review and update the Big Bear Lake Nutrient TMDL. - 2. To determine specific sources of nutrients. - 3. To develop TMDLs for other hydrologic conditions (wet & moderate years). - 4. To determine compliance with the Big Bear Lake Dry Nutrient TMDL, including the load and waste load allocations. Over the last few years, with considerable support from state and federal grant funds, local stakeholders developed comprehensive monitoring programs for the watershed and the lake itself. A large database of water quality information was created as part of these prior studies. The watershed-wide Monitoring Plan is intended to continue and enhance previous efforts to characterize water quality in the runoff draining to Big Bear Lake. One reason additional research is necessary is that, over the last few years, local stakeholders have implemented several new projects designed to improve water quality in Big Bear Lake (Table 1-1). It is important to confirm and quantify the effect of these remediation efforts in order to determine what additional steps must be taken to ensure long term protection of the lake. | Table 1-1. Projects Designed to Restore and Protect Beneficial Uses in Big Bear Lake | | | |
| | |--|----------------|--|--|--|--| | Remediation Project Dates | Dates | | | | | | Lake Level Stabilization | 1977 – present | | | | | | Aquatic Weed Control - Harvesting | 1980 – 2002 | | | | | | Aquatic Weed Control - Herbicides | 2002 – present | | | | | | Alum Application | 2003 – 2004 | | | | | | Sediment Trapping Basins | 2000 – present | | | | | | Deep Water Aeration Systems | 2004 – present | | | | | | Active Fishery Management | 2005 – present | | | | | | Sediment Dredging | 1980 – 2005 | | | | | More data are also required is to fill the gaps that presently preclude the Regional Board from calibrating water quality models to manage pollutant loads under moderate and wet weather conditions. The vast majority of nutrient loads are carried into the lake during the rainiest and snowiest years. Therefore, long-term success reducing nutrient impairments in Big Bear Lake depends on a better understanding of the dynamic and complex local hydrology. It is important to note that the Regional Board also required stakeholders to prepare and submit another water quality monitoring program for the lake itself⁵. Although the two plans share many of the same purposes, they are, in fact, separate documents. Big Bear Municipal Water District (BBMWD) independently developed and implemented the In-Lake Monitoring Program. The other stakeholders (City of Big Bear Lake, Big Bear Municipal Water District, San Bernardino County, Big Bear Mountain Resorts, State of California Department of Transportation and the U.S. Forest Service) took responsibility for developing and ⁴ California State Water Resources Control Board Agreement No. 04-204-558-0 (Proposition 13) ⁵ California Regional Water Quality Control Board #8 – Santa Ana Region. Attachment to Resolution No. R8-2006-0023. Resolution Amending the Water Quality Control Plan for the Santa Ana River Basin to Incorporate a Nutrient Total Maximum Daily Load (TMDL) for Dry Hydrological Conditions for Big Bear Lake. April 21, 2006. See Task 4.2 on page 13 of 18. implementing the Watershed-Wide Monitoring Plan. Whenever and wherever possible, the stakeholders intend to coordinate and integrate the monitoring efforts to improve data utility and reduce cost. However, this document addresses only Task 4.1 in the adopted TMDL. Task 4.2, the In-Lake Monitoring Plan, is provided as a separate submittal to the Regional Board. Finally, the stakeholders recognize that it will be useful to review and revise both monitoring plans in response to new information and regulatory requirements. To that end, the Watershed-Wide Monitoring Plan proposed in this document is not intended to establish permanent obligations or commitments. It establishes a reasonable starting point with every expectation that the sampling locations, collection schedule, analytical parameters, and other key elements may change annually, provided the Regional Board approves such modifications to the Monitoring Plan. #### 2. DATA QUALITY OBJECTIVES This section identifies the Data Quality Objectives (DQO), Measurement Quality Objectives (MQOs) and Data Quality Indicators (DQI) for the monitoring elements associated with this project (See Tables 2-1 through 2-4). The procedures and practices described below are designed to generate data of the type and quality necessary to support decision making as discussed in the Introduction to this Plan and ensure SWAMP comparability. # 2.1 Big Bear Lake Watershed-Wide Nutrient Monitoring Plan: - Tributary Water Quality, and Flow Data - Tributary nutrient monitoring efforts will be conducted near the mouths of 303d listed tributaries, including Rathbun Creek, Summit Creek, Grout Creek, Knickerbocker Creek, Boulder Creek and the Bear Creek Outlet (Dam Outlet). - The tributary nutrient monitoring efforts consist of the collection and analyses of discrete manual grab (IMG) samples or alternatively, samples may be collected using automated sampling equipment. - In order to ensure that a reasonable number of tributary water quality samples are collected for seasonal flow regimes, the following sample number target goals have been established: - Baseline Flow: Monthly samples from each applicable tributary (includes visual events when flow is absent). - Snow Melt Flow: Four monthly samples from each applicable tributary (once a month between February and May when representative flow is present). - Storm Event Flow: The goal is to sample two separate storm events and collect eight samples from each event over the hydrograph. - The project MQOs/DQIs for Completeness, Sensitivity, Precision, and Accuracy for analytical methods have been established in accordance with the SWAMP guidelines and are sufficient for the characterization of nutrient levels in tributaries. | | Table 2-1 Data | Quality Obj | ectives for C | onventio | nal Water Qualit | ty Parameters (| Field Monitorii | ng*) | |---------------------|--------------------------------------|----------------------------|---------------|----------|--|--|-----------------|--| | Parameter | Principle | Units | Range | TRL | Resolution | Precision | Recovery | Completeness | | Temperature | Thermistor | Degrees
Celsius
(°C) | 0 – 50 oC | N/A | +/- 0.1 oC | No SWAMP requirement; will use + 0.5 or 5% | N/A | No SWAMP
requirement;
will use 90% | | Dissolved
Oxygen | Membrane/
galvanic cell | mg/L | 0 – 19.9 | 0.2 | +/- 0.01 mg/L | No SWAMP requirement; will use + 0.5 or 10% | N/A | No SWAMP
requirement;
will use 90% | | pН | Glass
Electrode | S.u. | 0 – 14.0 | N/A | +/-0.01 s.u. | No SWAMP requirement; will use + 0.5 or 5% | N/A | No SWAMP
requirement;
will use 90% | | Conductivity | Altemating four-electrode | uS/cm | 0 - 100 | 2 | 0-1: 0.001
mS/cm
1-10: 0.01
mS/cm
10-100: 0.1
mS/cm | No SWAMP
requirement;
will use + 5% | N/A | No SWAMP
requirement;
will use 90% | | Turbidity | Scattering/
transmitting
light | NTUs | 0 - 800 | 5 | 1 NTU | No SWAMP
requirement;
will use +
10% or 0.1,
whichever is
greater | N/A | No SWAMP
requirement;
will use 90% | ^{*}Equipment is Horiba U-10 meter | | Table 2-2 D | ata Quality | | Water Quality | Analyses (Labor | atory) | | |--|---|-------------|----------------------|--------------------------------|------------------------------------|--------------------------|--------------| | Parameter | Method | Units | MDL/ TRL | Accuracy | Precision | Recovery | Completeness | | Total Nitrogen | SM 4500 | mg/L | Calc | Standard Ref.
within 95% Cl | Laboratory
duplicate 25%
RPD | Matrix Spike
80 -120% | 90% | | Total Dissolved
Nitrogen | SM 4500 | mg/L | Calc | Standard Ref.
within 95% CI | Laboratory
duplicate 25%
RPD | Matrix Spike
80 -120% | 90% | | Ammonia
Nitrogen | SM 4500 NH3N | mg/L | 0.1 | Standard Ref.
within 95% CI | Laboratory
duplicate 25%
RPD | Matrix Spike
80 -120% | 90% | | Nitrate-Nitrite
Nitrogen | SM 4500 N02B
EPA 300.0 | mg/L | 0.1 | Standard Ref.
within 95% CI | Laboratory
duplicate 25%
RPD | Matrix Spike
80 -120% | 90% | | Total
Phosphorus | SM 4500 PBE | mg/L | No SWAMP requirement | Standard Ref.
within 95% Cl | Laboratory
duplicate 25%
RPD | Matrix Spike
80 -120% | 90% | | Total Dissolved Phosphorus | SM 4500 PBE | mg/L | No SWAMP requirement | Standard Ref.
within 95% CI | Laboratory
duplicate 25%
RPD | Matrix Spike
80 -120% | 90% | | Ortho-
Phosphate | Ascorbic acid | mg/L | 0.01 | Standard Ref.
within 95% Cl | Laboratory
duplicate 25%
RPD | Matrix Spike
80 -120% | 90% | | Total
Suspended
Solids (TSS) | SM 2540 D | mg/L | 0.5/0.5 | Standard Ref.
within 95% Cl | Laboratory
duplicate 25%
RPD | Matrix Spike
80 -120% | 90% | | Dissolved
Organic Carbon
(DOC) | SM 5310 B | mg/L | 0.6 | Standard Ref.
within 95% CI | Laboratory
duplicate 25%
RPD | Matrix Spike
80 -120% | 90% | | Biological
Oxygen
Demand (BOD) | SM 5210 B | mg/L | 2 | Standard Ref.
within 95% CI | Laboratory
duplicate 25%
RPD | Matrix Spike
80 -120% | 90% | | Chemical
Oxygen
Demand (COD) | SM 5220 D | mg/L | 5 | Standard Ref.
within 95% CI | Laboratory
duplicate 25%
RPD | Matrix Spike
80 -120% | 90% | | Volatile Suspended Solids (VSS) (optional) | SM 2540 E | mg/L | 1.0/1.0 | Standard Ref.
within 95% Cl | Laboratory
duplicate 25%
RPD | Matrix Spike
80 -120% | 90% | | Total Organic
Carbon | SM 5310 B | mg/L | 0.1/0.6 | Standard Ref.
within 95% Cl | Laboratory
duplicate 25%
RPD | Matrix Spike
80 -120% | 90% | | Alkalinity as
CaCO3 | SM 2320 B | mg/L | 0.2/1.0 | Standard Ref.
within 95% Cl | Laboratory
duplicate 25%
RPD | Matrix Spike
80 -120% | 90% | | Hardness as
CaCO3 | Man Ver 2
Buret Titration
HACH 8266 | mg/L | 0.2/1.0 | Standard Ref. within 95% CI | Laboratory
duplicate 25%
RPD | Matrix Spike
80 -120% | 90% | | | Table 2-2 Data Quality Objectives for Water Quality Analyses (Laboratory) Cont. | | | | | | | | |------------------------|---|-------|----------|--|---|----------------------|--------------|--| | Parameter | Method | Units | MDL/ TRL | Accuracy | Precision | Recovery | Completeness | | | Grain-size
analysis | D 3977 | mg/L | 0.5 | LCM within
25% of stated
value; none
for grain size
analyses | Laboratory
duplicate
within
20% (+/-); none
for grain-size
analyses | No SWAMP requirement | 90% | | N/A = Not Applicable TBD = To Be Determined An associated Quality Assurance Project Plan (QAPP) has been prepared for this project, and includes additional detail regarding data quality objectives. The QAPP will be submitted to the Task Force in late spring or early summer 2009 and will include additional detail and standard operation procedures (SOP). #### 3. MONITORING PROGRAM DESIGN # 3.1 Sampling Locations In the TMDL, the Regional Board specified seven mandatory sampling stations: one each on the major tributaries to Big Bear Lake (Bear Creek, Grout Creek, Summit Creek, Knickerbocker Creek and Boulder Creek) and two on Rathbun Creek (Table 3-1 and Figure 1). No sampling point may be deleted from the list without advanced authorization from the Regional Board. However, the stakeholders may add more sampling locations at any time without the need for Regional Board approval. | | Table 3-1 Water Quality and Sediment Sampling Locations, Parameters, & SOPs | | | | | | | | | |--|---|----------------------------------|--------|--|---|------------------|--|--|--| | Sampling
Location | Location ID
Number | GPS Coordinates | Matrix | Parameters | Sampling Schedule | Sampling
SOPs | | | | | Rathbun Creek
(@ Sandlewood
Drive) | 801MWDC04 | Lat. 34.2531
Long116.887354 | Water | Temp., DO, pH, conductivity, turbidity, TN, TDN, NH3-N, NO3+NO2, TP, TDP, Ortho-P, BOD, COD, DOC, Hardness, Alkalinity, TSS, VSS, Flow, Grain Size | 12 Monthly Baseline, 4
Monthly Snowmelt (once
per month, Feb-May); 1
Summer Storm, 1 Winter
Storm | Form 11-4 | | | | | Rathbun Creek
(Below Zoo) | Input
SWAMP
station id
nomenclature | TBD | Water | Temp., DO, pH, conductivity,
turbidity, TN, TDN, NH3-N,
NO3+NO2, TP, TDP, Ortho-
P, BOD, COD, DOC,
Hardness, Alkalinity, TSS,
VSS, Flow, Grain Size | 12 Monthly Baseline, 4
Monthly Snowmelt (once
per month, Feb-May); 1
Summer Storm, 1 Winter
Storm | Form 11-4 | | | | | Grout Creek (@
Highway 38) | 801MWDC03 | Lat. 34,269447
Long116,948437 | Water | Temp., DO, pH, conductivity,
turbidity, TN, TDN, NH3-N,
NO3+NO2, TP, TDP, Ortho-
P, BOD, COD, DOC,
Hardness, Alkalinity, TSS,
VSS, Flow, Grain Size | 12 Monthly Baseline, 4
Monthly Snowmelt (once
per month, Feb-May); 1
Summer Storm, 1 Winter
Storm | Form 11-4 | | | | | West Summit
Creek (@ Swan
Drive) | 801MWDC05 | Lat. 34.248679
Long116.893777 | Water | Temp., DO, pH, conductivity,
turbidity, TN, TDN, NH3-N,
NO3+NO2, TP, TDP, Ortho-
P, Hardness, Alkalinity, TSS,
VSS, Flow, Grain Size | 12 Monthly Baseline, 4
Monthly Snowmelt (once
per month, Feb-May); 1
Summer Storm, 1 Winter
Storm | Form 11-4 | | | | | Knickerbocker
Creek (@
Highway 18) | 801MWDC08 | Lat. 34.243998
Long116.910525 | Water | Temp., DO, pH, conductivity,
turbidity, TN, TDN, NH3-N,
NO3+NO2, TP, TDP, Ortho-
P, BOD, COD, DOC,
Hardness, Alkalinity, TSS,
VSS, Flow, Grain Size | 12 Monthly Baseline, 4
Monthly Snowmelt (once
per month, Feb-May); 1
Summer Storm, 1 Winter
Storm | Form 11-4 | | | | | Boulder Bay
Creek (@
Highway 18) | 801MWDC13 | Lat. 34.237411
Long116.953122 | Water | Temp., DO, pH, conductivity,
turbidity, TN, TDN, NH3-N,
NO3+NO2, TP, TDP, Ortho-
P, BOD, COD, DOC,
Hardness, Alkalinity, TSS,
VSS, Flow, Grain Size | 12 Monthly Baseline, 4
Monthly Snowmelt (once
per month, Feb-May); 1
Summer Storm, 1 Winter
Storm | Form 11-4 | | | | | Bear Creek
(Dam Outlet) | 801MWDC02 | Lat. 34.242056
Long116.977056 | Water | Temp., DO, pH, conductivity,
turbidity, TN, TDN, NH3-N,
NO3+NO2, TP, TDP, Ortho-
P, Hardness, Alkalinity,
Flow, Grain Size | 12 Monthly Baseline, 4
Monthly Snowmelt (once
per month, Feb-May); 1
Summer Storm, 1 Winter
Storm | Form 11-4 | | | | The stakeholders may add more sampling stations where needed to trace specific sources. However, it is not possible to identify supplemental sampling sites until water quality data from the baseline monitoring program is collected and analyzed. In addition, the stakeholders may recommend deleting the sampling station below the zoo (MWDC #6) at some future date, as the zoo is planning to move to a location along the north shore of Big Bear Lake; thus there would not be a need to monitor directly downstream from the zoo, which had been a suspected source of nutrients and other constituents to Rathbun Creek. Any proposed amendments to the watershed-wide Monitoring Plan will be included in the Annual Reports submitted to the Regional Board beginning in February 2010. Figure 1. Sampling Locations in Big Bear Lake Watershed # 3.2 Analytical Parameters As with the sampling locations, the Regional Board mandated in the TMDL that certain water quality parameters be analyzed and reported. The specific field and laboratory parameters to be analyzed are presented in Table 3-2, along with information regarding the methods, units, method detection limit, and target reporting limit. Data regarding accuracy, precision, recovery, and completeness were presented above in Tables 2-1 and 2-2. No analyte may be deleted from the list without advanced authorization from the Regional Board. However, the stakeholders may add more analytes at any time without the need for Regional Board approval. | | | | Analytical | | | Target | |---------------------------------|--------------|-------|-------------------------------|---|----------|--------------------| | Parameter | Laboratory | Units | Method | Modification | MDLs | Report
Limits** | | Temperature | B&C Staff | оС | Thermometer
(-5 to 50oC) | None | NA | NA | | Dissolved Oxygen | B&C Staff | mg/L | Field – Horiba Meter | None | NA | 0.2 mg/L | | pH | B&C Staff | s.u. | Field – Horiba Meter | None | NA | NA | | Conductivity | B&C Staff | mS/cm | Field – Horiba Meter | None | NA | 2.0 uS/cm | | Turbidity | B&C Staff | NTU | Field – Horiba Meter | None | NA | 5.0 NTU | | Biochemical Oxygen
Demand | E.S. Babcock | mg/L | SM 5210B | None | 1.0 mg/L | 2.0 mg/L | | Total Organic
Carbon | E.S. Babcock | mg/L | SM 5310B | None | 0.1 mg/L | 0.6 mg/L | | Dissolved Organic
Carbon | E.S. Babcock | mg/L | SM 5210B | None | 0.1 mg/L | 0.6 mg/L | | Total Nitrogen | E.S. Babcock | µg/L | 4500-N B | None | 4 µg/L | calc | | Total Dissolved
Nitrogen | E.S. Babcock | µg/L | 4500-N B | Quick Chem
with durapore HV 0.45 m
filter | 4 µg/L | calc | | Ammonia Nitrogen | E.S. Babcock | µg/L | SM 4500-NH3,
10-107-06-3-D | QuickChem with durapore
HV 0.45 Im filter | 3 µg/L | 0.1 μg/L | | Nitrate/Nitrite
Nitrogen | E.S. Babcock | μg/L | SM 4500-NO2B
10-107-04-1-B | QuickChem with durapore
HV 0.45 lm filter | 5 µg/L | 0.1 μg/L | | Total Phosphorus | E.S. Babcock | μg/L | SM 4500 PBE
10-115-01-1-U | QuickChem
Modification | 2 µg/L | 2 μg/L | | Total Dissolved
Phosphorus | E.S. Babcock | μg/L | SM 4500 PBE
10-115-01-1-U | QuickChem with durapore
HV 0.45 m filter | 2 µg/L | 2 μg/L | | Ortho-Phosphate | E.S. Babcock | μg/L | SM 4500 PE
10-115-01-1-T | QuickChem with durapore
HV 0.45 Im filter | 3 µg/L | 0.01 µg/L | | Total Suspended
Solids | E.S. Babcock | mg/L | SM 2540 D | None | 0.5 mg/L | 0.5 mg/L | | Volatile Suspended
Solids | E.S. Babcock | mg/L | SM 2540 E | None | 1.0 mg/L | 1.0 mg/L | | Alkalinity as CaCO3 | E.S. Babcock | mg/L | SM 2320 B | None | 0.2 mg/L | 1.0 mg/L | | Hardness as CaCO3 | E.S. Babcock | mg/L | SM 3120 B HACH
8266 | None | 0.2 mg/L | 1.0 mg/L | | Grain size analysis | E.S. Babcock | mg/L | D 3977 | None | 0.5 | 1% | | Chemical Oxygen
Demand (COD) | E.S. Babcock | mg/L | SM 5220 D | None | | 5 | ^{*}Note: Samples collected at Bear Creek will not be analyzed for any of the sediment parameters or DO. 9 ^{**} The Target Reporting Limits (TRLs) will be finalized as part of the development of the Quality Assurance Project Plan (QAPP) # 3.3 Sampling Schedule The stakeholders propose to collect and analyze samples based on the schedule presented in Table 3-3. | Table 3-3: Sampling Schedule to Characterize Water Quality of Runoff in Watershed | | | | | | |---|----------------------|--|--|--|--| | Type of Analysis | Sampling Period | Sampling Frequency | | | | | Baseline Quality (Dry Weather) | Jan. 1st – Dec. 31st | Once per month when representative flow is present | | | | | Snowmelt Quality | Feb. 1st – May 31st | Four samples, once per month, between February and May when representative flow is present | | | | | Winter Storms | Oct. 1st – Mar. 31st | One storm event where est. rainfall >0.5*/24 hrs | | | | | Summer Storms | Apr. 1st - Sept. 1st | One storm event where est. rainfall >0.5"/24 hrs | | | | Sampling will begin no later than 60 days after the Regional Board staff approves this Final Monitoring Plan. # 3.4 Changes to the Sampling Design and Schedule The proposed sampling design and schedule differs from that specified in the TMDL. Several factors affect the ability of the stakeholders to accomplish the proposed sampling schedule. There are insufficient resources available in the small rural community of Big Bear Lake City, to support the level of effort required to collect all of the recommended samples recommended in the TMDL. For
example, the TMDL had specified weekly visual observations, extensive snow melt sampling, and sampling three storm events. In discussions at the Task Force meetings, it was decided that weekly observations were not necessary, as sampling would be conducted monthly, and that would be sufficient to determine when the stream are flowing. Similarly, the Task Force decided that single day sampling of snowmelt once a month between February and May would be adequate to characterize this form of runoff (rather than the more prescriptive sampling schedule provided in the TMDL). Finally, the remote location of the watershed makes it virtually impossible to contract sampling services for storm events; therefore, the stakeholders must rely on training resident personnel. Consequently, the Task Force decided that two storm events per year was the maximum number of storms that can be feasibly sampled (one in each season at each sampling location) rather than the three events requested by the Regional Board. It may not be possible to collect samples from all locations during a single storm event. Sampling may be divided, with some locations being collected during an early season storm and remaining locations during a late season storm. This fragmented schedule will make best use of available staff and resources (particularly automated samplers). # 3.5 Sampling Protocols This Monitoring Plan includes three Standard Operating Procedures (SOP) that detail how the field parameters will be sampled, equipment needed, calibration schedule, maintenance routines, and where records will be kept (SOP 11-4, Big Bear Lake Tributary Water Quality Sampling SOP and Record, SOP 15-1, Big Bear Lake Horiba Instrument Maintenance SOP and Record, and SOP 16-1, Big Bear Lake Horiba Instrument Calibration SOP and Record). This SOP is included as an Appendix to this Monitoring Plan. In addition, this Plan includes a SOP for watershed-wide sampling which details how the water samples will be collected, equipment needed, calibration schedule, maintenance routines, sample containers, preservation and storage, holding times, how samples will be labeled, and how samples will be packed for transportation to the lab (SOP 11-4 Big Bear Lake Tributary Water Quality Sampling SOP and Record), which is also included in the Appendix to this Plan. Specific details regarding field methods and procedures are described below in Section 4.0. This Monitoring Plan specifies that samples will be collected when representative flow is present. Extreme low flow and flash flood conditions will not be sampled. Samples will only be collected when it is safe and prudent to do so. Low flows usually percolate before reaching the lake and are, therefore, irrelevant to assessing TMDL compliance. In addition, low flow conditions create difficult sampling conditions as it is difficult to fill containers without disturbing the underlying sediment thereby contaminating the samples. Analytical results collected under such conditions would not accurately characterize true water quality and could severely distort subsequent interpretation and modeling efforts. Photographs will be used to document low flow conditions when and where they occur. Flash floods occur frequently in mountain streams during rain storms, creating hazardous sampling conditions. While every effort will be made to collect all samples as required by the Regional Board, at no time will stakeholders allow sampling personnel to take undue risk to fulfill this obligation. # 3.6 Data Management The Big Bear Lake Nutrient TMDL Task Force will maintain a record of all field analyses and sample records collected through the monitoring program. SAWPA has an existing database of laboratory and field measurement data from previous studies. This database, along with all future data, will be maintained by SAWPA under the direction of the Monitoring Program Manager. Laboratory data will be reported and delivered in SWAMP format (http://swamp.mpsl.mlml.calstate.edu/resources-and-downloads/databasemanagement-systems/swamp-25-database). All laboratory and field measurement data submitted to SAWPA for inclusion in the SAWDMS database will follow the guidelines and formats established by SWAMP (http://www.waterboards.ca.gov/swamp/qapp.html). Data will be transmitted to SAWPA in a standard electronic format and uploaded to the database through batch set electronic means. All contract laboratories will maintain a record of transferred records and will periodically assess their record of transferred records against those actually held by the Task Force. Prior to upload, QA/QC tools will check new data against existing data in the database for completeness, validity of analytical methods, validity of sample locations, validity of sample dates, and data outliers. Data not passing QA/QC tests will be returned to the originating laboratory or generator for clarification and or correction. When all data within a batch set have passed QA/QC, the data will be uploaded to the database. A unique batch number, date loaded, originating laboratory, and the person who loaded the data will be recorded in the database, so that data can be identified and removed in the future if necessary. All chemical monitoring records generated by these programs will be stored at SAWPA. The contract laboratory's records pertinent to the program will be maintained at the contract laboratory's main office. Copies of all records held by the contract laboratory will be provided to the Task Force and stored in the Task Force archives. All records will be passed on to the Santa Ana Regional Board TMDL Program Manager, and/or other State Agencies as required and appropriate for each project at project completion. Copies of the chemical monitoring records will be maintained by SAWPA and each laboratory contracted by the Task Force for five years after project completion then discarded, except for the database, which will be maintained without discarding. Copies of other monitoring records will be maintained by the Program Administrator for the Project for five years after project completion then discarded. The Task Force's database is backed up using built-in software backup procedures. In addition, all data files will be backed up on tape on a weekly basis as part of SAWPA's SOP for disaster recovery. Back up tapes are kept for a minimum of four weeks before they are written over. Tapes are rotated off-site for separate storage on a monthly (or more frequent) basis, in accordance with SAWPA Information Systems SOPs. Each back up session validates whether the files on tape are accurate copies of the original. The Task Force also maintains an access log showing who accessed the database, when, and what was done during the session. All changes to the database are stored in a transaction database with the possibility of rollback, if necessary. Data will be stored on a Windows 2003 Server with a 2Ghz + CPU and 2Gb RAM with a fail safe RAID 5 configuration. The server checks for operating system updates daily and downloads and installs patches and service packs as necessary. The current server is two years old, and as per SAWPA policy, will be replaced after a maximum of 4 years of service. The server is also protected with Norton Anti-Virus software which is updated daily. The database software is Microsoft SQL Server 2000 standard edition with Service Pack 4. The database administrator checks the Microsoft Website for new patches and service packs on a monthly basis and installs updates as necessary. The general policy for updating operating system and database software is to evaluate the software on a test machine after a new version has been out for approximately 1 year. The new version is then installed at the discretion of the network or database administrator. The database will be operated with a transaction log recording all changes with ability to roll back if necessary. Full database backups will occur on a weekly basis and immediately before batch uploads. It is expected TMDL data will be loaded quarterly to twice per year. Data will be exported from SAW DMS into the SWAMP format using a pre-made query that will map data fields from SAW DMS to the SWAMP template. The exported data will then be sent to the SWRCB IM Coordinator for processing into the SWAMP database. The data will be retrieved for analysis and report writing by exporting from SAW DMS using pre-made queries. The Quality Assurance Manager will conduct reviews of sampling procedures on an annual basis. Reviews will be observed practices against those found in the QAPP. The Quality Assurance Manager will audit all contract laboratories annually. The review will be observed method practices against contract laboratory's SOPs and an audit of data from the contract laboratory's quality assurance and quality control program. If an audit discovers any discrepancy, the Quality Assurance Manager will discuss the observed discrepancy with the appropriate person responsible for the activity. The discussion will begin with whether the information collected is accurate, what were the cause(s) leading to the deviation, how the deviation might impact data quality, and what corrective actions might be considered. The Quality Assurance Managers has the power to halt all sampling and analytical work by both Task Force and contract laboratory if the deviation(s) noted are considered detrimental to data quality. All data records will be checked visually and recorded as checked by initials and dates. The Quality Assurance Manager will do all reviews, and the Task Force Program Coordinator will perform a check of 10% of the reports. The contract laboratory's Quality Assurance Officers will perform checks of all of its records and the contract's Laboratory Director will recheck 10%. All checks by the contract laboratory will be reviewed by appropriate Task Force personnel. Issues will be noted. Reconciliation and correction
will be done by a committee composed of the Field Supervisor, Analyst, and appropriate Quality Assurance Manager; and the contract laboratory's Quality Assurance Officer and Laboratory Director. Any corrections require a unanimous agreement that the correction is appropriate. The Task Force will meet regularly to review results from the monitoring program and make any appropriate adjustments to ensure the utility and integrity of data collected. The Regional Board will be notified of all such meetings and is welcome to participate in the process. # 3.7 Reporting All data collected will be comparable with the state's Surface Water Ambient Monitoring Program (SWAMP). The results of all sampling and analyses performed as part of this watershed-wide Monitoring Plan will be reported annually, in writing and electronically, to the Regional Board beginning in February 2010. The Annual Reports will include a statistical summary of the data noting any relevant spatial or seasonal differences observed. The annual report will also evaluate the sampling data to assess compliance with the load allocations, wasteload allocations or other relevant water quality objectives. Hard copies of all laboratory reports, including any QA/QC data, will be included as an appendix to the annual report. A copy of the electronic database, containing all data collected to support the Big Bear Lake TMDL effort, will also be provided (on CD) with the Annual Report. Any deviations or exceptions from the approved watershed-wide Monitoring Plan will be identified and explained in the transmittal letter that accompanies the Annual Report when it is delivered to the Regional Board. Where appropriate, the stakeholders will also describe the specific steps taken to avoid similar deviations or exceptions in the future. Where appropriate, the annual report may recommend changes to the watershed-wide Monitoring Plan. However, the number of sampling locations, specific analytes, or sampling frequency will not be reduced without prior authorization from the Regional Board. The stakeholders may also elect, at their option, to merge the annual reports for watershed-wide monitoring program with the in-lake monitoring program unless the Regional Board objects. #### 3.8 Period of Performance It is likely that some sort of comprehensive watershed-wide monitoring program will be necessary for at least twenty years. This plan is only intended to cover the period from 2008 through 2012. This is necessary because the stakeholders cannot legally commit themselves or their agencies to expend public funds far into the indefinite future. The stakeholders will submit a revised Monitoring Plan by December 31, 2011. The revised Monitoring Plan should be evaluated and authorized during the regular Regional Board TMDL review scheduled to occur in 2012. Therefore, the commitment to perform the tasks described in this Monitoring Plan will expire on December 31, 2012 unless reauthorized by the Regional Board prior to that date. # 3.9 Responsible Parties The following firms, agencies, and individuals will be responsible for implementing the monitoring program. Important contacts and telephone numbers are provided in Table 3-4. #### **Brown and Caldwell** Nancy Gardiner is the Project Manager for Brown and Caldwell. Brown and Caldwell is responsible for preparing the Monitoring Plan and training staff from Big Bear Mountain Resorts, the City of Big Bear Lake, Big Bear Municipal Water District, and the U.S. Forest Service in proper sampling methods. As part of this training, staff from the stakeholder groups will "shadow" Brown and Caldwell staff during two dry weather season sampling events. #### **Stakeholders** Trained staff from Big Bear Mountain Resorts, the City of Big Bear Lake, Big Bear Municipal Water District, and the U.S. Forest Service will be responsible for conducting subsequent sampling efforts for dry weather, snow melt, and wet weather sampling events. In the event these staff are unavailable for this work, Brown and Caldwell may be called upon to assist with a portion of the effort. #### Edward S. Babcock and Sons, Inc. Edward S. Babcock and Sons, Inc. (Babcock) will serve as the analytical laboratory for this program. Babcock is certified under the State of California Environmental Laboratory Accreditation Program (ELAP). Cathy Iijima is responsible for supplying the sample bottles, coolers and chain of custody forms to Brown and Caldwell. Hsin-Yi Lin is responsible for coordinating the sample analyses and for addressing any changes with respect to sample analyses. Upon written request, the sampling teams can collect identical split samples to be shipped and analyzed by an independent laboratory selected by the Regional Board. There will be no charge for collecting the split samples; however, the Regional Board must pay for the cost of shipping and analyzing the samples to their laboratory. | Table 3-4. Important Contact Information | | | | | | | | | |--|---|-----------------------|----------------------|----------------|--|--|--|--| | Name | Agency | Role | Office Phone | Cell | | | | | | Nancy Gardiner | Brown and Caldwell | Project Manager | (858) 571-6742 | (858) 337-4061 | | | | | | Lisa Skutecki | Brown and Caldwell | Field Team Member | (858) 571-6739 | (619) 857-5472 | | | | | | Laura Carpenter | Brown and Caldwell | Field Team Member | (858) 571-6762 | (858) 361-3971 | | | | | | Brett Bennetts | Brown and Caldwell | Field Team Member | (858) 571-6713 | (858) 228-0867 | | | | | | Jim Atkinson | Brown and Caldwell | Field Team Member | (858) 571-6755 | (858) 337-4064 | | | | | | Tim Moore | Risk Sciences | Task Force Consultant | (615) 370-1655 | | | | | | | Hope Smythe | Regional Water Quality Control Board | Regulatory Oversight | (951) 782-4493 | | | | | | | Michael Perez | Regional Water Quality Control Board | Regulatory Oversight | (951) 782-4306 | | | | | | | Heather Boyd | Regional Water Quality Control Board | Regulatory Oversight | (951) 320-2006 | | | | | | | Karl Klouzer | Big Bear Mountain Resorts | Task Force Member | (909) 866-5766 x 124 | | | | | | | Scott Heule | Big Bear Municipal Water District | Task Force Member | 909-866-5796 | | | | | | | Cathy Jochai | California Department of Transportation | Task Force Member | (909) 381-5817 | | | | | | | David Lawrence | City of Big Bear Lake | Task Force Member | (909) 866-5831 x198 | | | | | | | Matt Yeager | San Bernardino County | Task Force Member | (909) 387-8112 | | | | | | | Mark Norton | Santa Ana Watershed Project Authority | Task Force Member | (951) 354-4221 | | | | | | | Rick Whetsel | Santa Ana Watershed Project Authority | Task Force Member | (951) 354-4222 | | | | | | | Robert Taylor | U.S. Forest Service | Task Force Member | (909) 382-2660 | | | | | | | Hsin-Yi Lee | Edward S. Babcock and Sons, Inc. | Analytical Laboratory | (951) 653-3351 x251 | (909) 837-0903 | | | | | | Cathleen S. lijima | Edward S. Babcock and Sons, Inc. | Analytical Laboratory | (951) 653-3351 | (951) 205-7625 | | | | | #### 4. FIELD METHODS AND PROCEDURES Water quality samples will be collected using one of the two following techniques: - Instantaneous Manual Grab (IMG), or - Automated Equipment (AE). Beginning in spring 2009, instantaneous manual grab sampling will be used to collect baseflow, snow melt and storm event samples at the seven tributary stations. Corresponding tributary flows at the time of sampling will be recorded by the available flow equipment (i.e., pressure transducers). In the absence of flow measuring equipment, tributary flows will be estimated by water depth flowing over the constructed weir or a flow equation/calculation using dimension information about the channel. During 2009, all samples will be collected using manual grab sampling methods while the existing ISCO samplers are evaluated, repaired, and/or reconditioned for future use.. The installation and use of automated samplers and flow-measuring devices is governed by a number of state and federal agencies including, but not limited to: U.S. Army Corps of Engineers, U.S. Fish and Wildlife Service, U.S. Forest Service, U.S. Environmental Protection Agency, U.S. Geological Survey, California Department of Fish and Game, California Regional Water Quality Control Board - Santa Ana Region, California State Water Resources Control Board, California Department of Water Resources, San Bernardino County Flood Control District and the City of Big Bear Lake. Stream access and use of necessary sampling/measuring equipment is dependent upon receiving all necessary permits and authorization Each sample will be carefully documented using a field data collection sheet for the sampling technique utilized as well as the type of flow sampled. Automated samplers will also maintain an electronic sampling record. Corresponding tributary flows at the time of sampling will be recorded by the available flow equipment (i.e., pressure transducers). In the absence of flow measuring equipment, tributary flows will be estimated by water depth flowing over the constructed weir or a flow equation/calculation using dimension information about the channel. Stream access is dependent upon receiving all necessary permits and authorization. # 4.1 Water Quality Sample Types In the Big Bear Lake watershed, water flowing in tributaries (or flow type) is most likely the result of one or a combination of the following: - Baseflow (generally spring fed flow); - Snow Melt; and, - Storm Event (rain precipitation). Note: In all cases, it is extremely important for field personnel to clearly identify in the field notes and the chain-of-custody, the type of flow (or nature of the discharge) that was sampled. Tributary water quality sampling frequency and sampling approach is dependent on the type of flow event and the time of year. Under this plan, tributary monitoring will be performed
at the following frequencies for these established flow types: - Baseflow January through December at a frequency of once per month when baseflow is present. If flow is absent, conduct visual monitoring (with photodocumentation) only; - Snow Melt February through May Snow melt sampling efforts are to be initiated a after a substantial snowfall event resulting in an accumulation of 1.0 foot or more of snow and after February 1st of each year; and, - Storm Events January through December The storm event sampling objective is to capture a total of two storm events. Specifically, the goal will be to collect representative storm data from one (1) storm event during Southern California's wet season (October March) and sampling one (1) summer storm event during California's dry season (April September). Sample types will be designated as one of the following types: First Flush (FF) - Hydrograph Discreet (HD #1-8) - Flow Composite (FC) **First Flush** samples capture the first 30 minutes of tributary discharge during a storm event. The highest concentrations of contaminants (e.g., nutrients and sediments) are often found in the "first flush" discharges, which occur during the first major storm event after an extended dry period. First flush samples may be collected either as instantaneous grab samples or using automated samplers. **Hydrograph Discreet #1 - #8** samples are discrete samples that will be intended to characterize water quality concentrations at discrete points along the hydrograph. Ideally, the storm event sampling program will enable the collection of 8 discrete water quality samples over the entire hydrograph associated with a given storm event. These 8 samples will be submitted for individual analysis, and then later combined for a flow composite analysis. **Flow Composite** samples are flow-weighted composite samples collected by automated samplers during the entire period of the hydrograph. Storm samples will be combined into 24-hour flow-weighted composites for laboratory analysis as described in this Monitoring Plan. Historic data were collected as a time-weighted composite over a 2.5 hour interval which may not have captured the entire hydrograph. #### Other Samples For storm event, snow melt, and/or baseflow samples collected manually, the person sampling will document the exact date and time of sample collection, type of flow observed, and flow velocity. For snow melt and rain events, the sampler will make every attempt to document the start time of the event, the start time of the first observed discharge, the duration of the event, and any other informational observations. A field data collection sheet will be provided for this purpose. # 4.2 Tributary Water Quality Sampling Parameters A list of water quality sampling parameters, together with their analytical methods, units, method detection limits, target reporting limits, accuracy, precision, recovery, and completeness was presented above in Section 3.2. No analyte may be deleted from the list without advanced authorization from the Regional Board. However, the stakeholders may add more analytes, at any time without the need for Regional Board approval. Water quality indicators such as water temperature, conductivity, and pH will be measured using a multiparameter portable field meter (YSI 556-02, Horiba U-10, or equivalent). Field data sheets will be provided to report data measured and recorded in the field. All other samples will be submitted to Babcock Laboratories for analyses. # 4.3 Tributary Flow Monitoring Stations Tributary flow monitoring stations will be established at the following locations: - **Boulder Creek** at Hwy. 18 (801MWDC13); - Grout Creek (801MWDC03); - Rathbun Creek @ Sandalwood (801MWDC04); - Knickerbocker Creek at Hwy. 18 (801MWDC08);and, - Bear Creek Outlet (801MWDC02). Note: West Summit Creek will not be equipped a flow measuring structure or device. Although this station will periodically be monitored for water quality parameters, this tributary often has insufficient surface flow for consistent monitoring. Boulder Creek – At this location, just upstream of the Highway 18 crossing and a water level pressure transducer, an existing compound weir (5 cfs rectangular and v-notch weir) will be utilized to collect flow data. This weir is located below the lake high water line (HWL), therefore, flow data at this location will not be available when it is submerged by backwater. If resources and time allows, the BBMWD may install a partial flume and a second water level pressure transducer upstream of both the existing weir and lake backwater. Physical restraints at the upstream location may prevent the installation of the partial flume, therefore, the potential for installation is only tentative. A data logging pressure transducer and a U.S. Geological Survey staff gage (0 to 6 feet in depth range) are also scheduled to be installed in Boulder Creek. The pressure transducer and staff gage will measure water level in the stream, which can then be converted to stream flow data. **Grout Creek** – Flow measurements from Grout Creek are extremely critical to project efforts as flows from this tributary primarily drain property owned by the U.S. Forest Service. Grout Creek is currently the only tributary to provide monitoring data from the north shore of the lake. Grout Creek currently enters the lake under three archways associated with the Highway 38 bridge. BBMWD plans to construct a broad-crested concrete weir along the base of all three arches, approximately 12 inches in total height above the stream bed, which would include the embedding of a compound v-notch/rectangular weir in the center archway. A data logging pressure transducer and a U.S. Geological Survey staff gage (covering a range of 0 to 6 feet) will also be installed at this location adjacent to the weir. The devices will provide continuous water level measurements in the stream, stream flow data, and peak flow information. Additionally, a continuous dissolved oxygen meter is planned for installation, to collect that data during stream flow. Rathbun Creek – An existing 50 cfs compound weir structure on the downstream side of the culvert at the Sandalwood Road crossing of Rathbun Creek, will be utilized for flow measurements. However, this weir may be modified to eliminate the wooden wingwalls and extending the concrete portion of the weir to the sides of the existing concrete box culvert. A sharp-edged steel weir will be installed along the full length of the existing concrete weir to improve the accuracy of flow measurements and will be bolted to the top edge of the concrete weir. In addition, one or two check structures are also proposed for Rathbun Creek. These check structures would be located upstream of the box culvert on Sandalwood Road to protect the weir and culvert from sediment accumulation behind the weir. The check structures would provide a more convenient location for cleaning out accumulated sediment. As with the other tributary locations, self-powered data logger pressure transducer, a U.S. Geological Survey staff gage, and a dissolved oxygen meter will also be installed in Rathbun Creek near the slightly modified concrete weir. Knickerbocker Creek — BBMWD plans to install a weir, data logging pressure transducer, U.S.G.S. staff gage and dissolved oxygen meter on the rip-rap armored segment of Knickerbocker Creek, downstream of the Highway 18 crossing. Specifically, BBMWD anticipates that the weir structure will be installed on top of an existing abandoned concrete structure in the streambed. A broad-crested weir, consisting of a small concrete wall with a sharp-edged steel weir, would also be installed from the primary weir out to the channel edges, for flows that exceed the capacity of the primary weir. **Bear Creek Outlet** – No additional structure or equipment installation is required to obtain flow measurements at this site. The existing weir and water level data logging device as well as the data collection system will be utilized by BBMWD for flow measurements at this location. # 4.4 Sample Bottles and Labels Babcock Laboratories will supply appropriate sampling bottles to the field staff. The field staff will prepare sample labels and affix them to the sample bottles. The following information will be identified on each sample label: - 1. Project name "BBL Nutrient TMDL." - 2. Sample Number which identifies sample location, date, and aliquot (see sample assignment numbers shown in Table 4-3) to be completed by the sampling crew in the field - 3. Date and Time sample collected to be completed by the sampling crew in the field - 4. Initials of individuals who collected the sample to be completed by field sampling crew Each crew will be supplied with the bottles necessary to collect the samples at each site prior to the anticipated storm event. Portions of the labels should be filled in prior to going out in the field (#1 and #2). A waterproof marker should be used to make sure information on the label does not become distorted. Label information must also be entered on the Chain of Custody, as described in Section 4.6. Table 4-2 details the types of containers, preservation, and holding time requirements for all analyses. | Table 4-2 Water Quality Sample Container, Preservation, & Holding Time Requirements | | | | | | | | |---|---------------|--------------------------------------|-------------------|--|--|--|--| | Parameter | Sample Volume | Sample Container | Preservation | Preferred / Maximum
Holding Times | | | | | Temperature | N/A | Sample directly with
Horiba meter | None | Immediately | | | | | Dissolved Oxygen | N/A | Sample directly with
Horiba meter | None | Immediately | | | | | рН | N/A | Sample directly with
Horiba meter | None | Immediately | | | | | Conductivity | N/A |
Sample directly with
Horiba meter | None | Immediately / refrigerate up to 24 hours | | | | | Turbidity | 500 mL | Sample directly with
Horiba meter | None | Immediately / store in dark for up to 24 hours | | | | | Total Suspended Solids | 1000 mL | Plastic bottle | Cool to 4°C | 7 days | | | | | Volatile Suspended Solids | 1000 mL | Plastic bottle | Cool to 4°C | 7 days | | | | | Alkalinity | 100 mL | Plastic bottle | Cool to 4°C | 14 days | | | | | Hardness | 200 mL | Plastic bottle | Cool to 4°C | Immediately / refrigerate in dark for up to 48 hours | | | | | Total Organic Carbon | 40 mL | Amber Glass bottle | Cool to 4°C | 28 days | | | | | Total Nitrogen | 500 mL | Plastic bottle | Cool to 4°C | Immediately / refrigerate in dark for up to 48 hours | | | | | Total Dissolved Nitrogen | 500 mL | Plastic bottle | Cool to 4°C, dark | Immediately / refrigerate in dark for up to 48 hours | | | | | Ammonia-N | 250 mL | Plastic bottle | Cool to 4°C, dark | Immediately / refrigerate in dark for up to 48 hours | | | | | Nitrate+Nitrite-N | 250 mL | Plastic bottle | Cool to 4°C, dark | Immediately / refrigerate in dark for up to 48 hours | | | | | Table 4-2 Water Quality Sample Container, Preservation, & Holding Time Requirements | | | | | | | | |---|---------------|--|-------------------|--|--|--|--| | Parameter | Sample Volume | Sample Container | Preservation | Preferred / Maximum
Holding Times | | | | | Orthophosphate-P | 250 mL | Plastic bottle | Cool to 4°C, dark | Immediately/ refrigerate dark up to 24 hours | | | | | Total Dissolved Phosphorus | 250 mL | Plastic bottle | Cool to 4°C, dark | Immediately / refrigerate in dark for up to 48 hours | | | | | Total Phosphorus | 500 mL | Plastic bottle | Cool to 4°C, dark | Immediately / refrigerate in dark for up to 48 hours | | | | | Biochemical Oxygen Demand (BOD) | 4000 mL | 4-L cubitainer | Cool to 6°C, dark | 48 hours | | | | | Chemical Oxygen Demand (COD) | 1000 mL | Glass container | Cool to 6°C, dark | 28 days | | | | | Dissolved Organic Carbon (DOC) | 40 mL | Amber glass bottle | Cool to 6°C, dark | 28 days | | | | | Grain size analysis | 125 mL | 125-mL clear glass jar;
pre-cleaned | Cool to 6°C, dark | Refer to method | | | | # 4.5 Assignment of Sample Numbers A code will be used to uniquely identify each sample taken. Each code segment will be separated by a dash. The first segment will be "BBL-W" for Big Bear Lake Watershed. The next segment will be the sampling location number. Table 6 identifies the code information to be used for each location. The next segment will consist of 6 characters identifying the date of the sampling event (mmddyy). The final segment, will not be separated by a dash. It will be an alpha character to identify the sampling order within the event. For example, sample number BBL-W-801MWDC03-020609 C C stands for a sample that was collected in the Big Bear Lake Watershed at Location 3 (Grout Creek), and on February 6, 2009; this sample was the third sample of that event. The sample location numbers will be assigned as follows. | Table 4-3. Sample Assignment Numbers | | | | | | | | | | | |--------------------------------------|-----------------|---------------------------------------|--|--|--|--|--|--|--|--| | Location | Location Number | Sample Number | | | | | | | | | | Bear Creek | 801MWDC02 | BBL-W-801MWDC02_mmddyy A, B, C, D, E, | | | | | | | | | | Grout Creek | 801MWDC03 | BBL-W-801MWDC03_mmddyy A, B, C, D, E, | | | | | | | | | | Rathbun Creek | 801MWDC04 | BBL-W-801MWDC04_mmddyy A, B, C, D, E, | | | | | | | | | | Summit Creek | 801MWDC05 | BBL-W-801MWDC05_mmddyy A, B, C, D, E, | | | | | | | | | | Rathbun Creek (Below Zoo) | TBD | BBL-W-TBD_mmddyy A, B, C, D, E, | | | | | | | | | | Knickerbocker Creek | 801MWDC08 | BBL-W-801MWDC08_mmddyy A, B, C, D, E, | | | | | | | | | | Boulder Creek | 801MWDC13 | BBL-W-801MWDC13_mmddyy A, B, C, D, E, | | | | | | | | | #### 4.6.1 Watershed-wide Monitoring Field Data Sheets Field Data sheets will be completed at each sample location, for each event. See Appendix A for a sample data sheet. Field data collection sheets ensure that the data collected for this project are SWAMP-comparable. Digital photographs will also be taken at each site, showing the actual sample collection point, as well as conditions upstream and downstream of the sampling site. Each crew will complete the field data sheets and turn them in to the Field Team Leader. The data from the field sheets will be entered into the database and will then be submitted to Rick Whetsel of SAWPA/Big Bear Lake Nutrient TMDL Task Force for inclusion in the Big Bear Lake Nutrient TMDL file. #### 4.6.2 Chain of Custody Forms Babcock Laboratories will supply the chain of custody (COC) forms. As much as possible of the COC information should be entered prior to going out in the field. The sampling crews will fill out these forms (while on site in the field) with the following information for each event: - 1. Contact Person and Telephone Numbers: - 2. Name of Study: Big Bear Lake Nutrient TMDL Watershed-Wide Sampling. - 3. Analyses to be performed - 4. Type of sample collected, matrix "Liquid." - 5. Number of bottles per sample and preservatives used (per bottles provided by the analytical laboratory). Each sampling crew will complete the following information on the COC form: - 1. Sample number. - 2. Date and time sample collected. - 3. Name of sampling staff and signature. After entering the field data at each location, the COC should be protected in a sealed baggie, to prevent smearing and water damage to the form. Chain of custody protocols will be followed as samples are transferred to the lab. This may require multiple signatures (i.e. field crew to field team leader to courier). Copies of field forms and Chain-of-Custody forms are provided in Appendix A. # 4.7 Sample Handling and Transport In the field, all samples will be placed on wet ice or frozen ice packs until shipment. Identification information for each sample will be recorded on the field data sheets (if utilized) and chain-of-custody forms). Samples that are not processed immediately in the field will be labeled with the waterbody name, sample location, sample number, date and time of collection, sampler's name, and method used to preserve sample (if any). Samples will be handled, prepared, transported, and stored in a manner so as to minimize loss, misidentification, contamination, and/or degradation. Samples will be shipped on ice and in insulated containers (e.g., insulated cooler). All caps and lids will be checked for tightness prior to shipping. Ice chests are sealed with tape prior to shipment. Efforts will be taken to minimize the leakage of any melted ice from the sample shipment container. It is assumed that samples in a sealed cooler are secure regardless of method of transportation to the selected analytical laboratory. Sample packaging will include the following steps: - Each sample will either be sealed with electrical tap around the sample lid or placed in a sealed plastic bag (Ziploc) to prevent leakage. - Glass sample containers will be wrapped with plastic insulating material to prevent contact with other sample containers and the inner walls of the cooler. - Ice (double bagged in plastic trash bags) and/or reusable "blue ice" packs will be placed in the cooler with the samples to maintain the samples at 4° C during shipment. - The Chain-of-Custody (COC) record will be enclosed in a waterproof plastic bag and taped to the underside of the cooler lid. - Each cooler prepared for shipment will be securely taped shut with reinforced or other suitable tape (strapping tape). - Samples will be packaged in thermally insulated, rigid coolers. - When shipping a cooler by commercial carrier, such as Federal Express, all coolers should be shipped "Priority Overnight" and air bills will be completed and attached to the exterior lids of the containers. The collected samples are to be delivered to the laboratory for analyses as soon as practicable. Any delay in the receipt of the samples by the laboratory could necessitate a re-sampling and analysis effort. At the end of the sampling activities, each crew will deliver the samples for chemical analyses with the respective COC forms to Babcock, or coordinate with a reliable courier for sample drop off. Table 4-4 provides contact information and driving directions to Babcock Laboratories. In the event that samples need to be dropped off on a weekend or after standard hours of operation, the Brown and Caldwell Project Manager will call Cathy Lijima to make special arrangements for laboratory staff to be available. #### Table 4-4. Sample Drop Off Location/Responsible Staff Cathy Lijima Babcock Laboratories 6100 Quail Valley Court Riverside, CA 92507 (951) 653 – 3351 #### **Driving Directions** From I-215: Exit on Eastridge/Eucalyptus; Turn right on Eastridge to the west; turn right onto Box Springs Blvd. (north) Stay on it for half a mile; turn left at stop sign, still on Box Spring Blvd., turn right on Quail Valley Ct. Lab is at the end of the cul-de-sac. Hours of Operation: Monday – Friday: 8:00am to 5:00pm (or by appointment). The sample receipt personnel at the laboratory will open the container and perform an initial inspection of the contents to check for evidence of breakage and/or leakage. The container will be inspected for COC documents and any other information or instructions. The sample custodian will verify that all information on the sample bottle labels is correct and in accordance with the COC documents and will sign for receipt. If discrepancies are noted between the COC and the sample labels, the project contact will be notified immediately. Contract laboratories will follow the sample custody procedures outlined in their QA
plans. These QA plans are on file with each respective laboratory. All samples will be stored in a refrigerated, secure area. Samples will be removed from storage as needed by the analyst; analysts check out samples by signing a logbook maintained in sample control for tracking samples. #### 4.8 Storm Event Definition The Monitoring Plan requires that one winter (wet season) and one summer (dry season) storm event be sampled. A storm event will be sampled only as directed by the project manager. Each location will have sampling for one wet season and one dry season storm. Not every location will be sampled in one storm. A storm event is defined as either: - Precipitation of more than 0.25 inches in a 24-hour period, or - A doubling of flow within a 24-hour period, as indicated by a stream gauge, or as visually estimated. # 4.9 Site Inaccessibility Issues Site inaccessibility may be an issue for stream sites, under various circumstances described below. - 1. If it would be dangerous to approach the stream during a sampling event due to swift water or other hazardous conditions, it is considered inaccessible. In this event, the sampling team will delay sampling for 24 hours up to 48 hours after the storm event (as determined by protocol listed above). Alternatively, if a bridge is available from which to conduct sampling, sampling will occur on schedule at that location from the bridge. In the event that a site is considered inaccessible, the field team will take photographs as documentation of the site condition. - 2. If sampling sites are temporarily or permanently blocked by a physical obstruction, such as downed trees or evidence of land- or rockslide, or ice or snow, the sampling team may move 25-50 ft. upstream or downstream from the site and conduct sampling there. If there still is no suitable access, the project team may discuss the possibility of sampling further away (up to 100 ft.) from the original station with the project manager, who will approve the change. - 3. If the sampling site comes under new ownership, such that previously granted access is now denied, permission will be obtained from the new owner. If this is still denied, a permanent new location will be selected as near as possible to the original station, ideally within 1,000 feet, and not in a morphologically different stream reach. Depending on flow status, tributary sampling may be more difficult to re-schedule at certain times of the year. Storm events that occur after business hours or on the weekends will not be sampled due to safety issues and manpower constraints. In the future, automated sampling equipment may be employed to assist with the collection of storm water samples. A target of 90 percent completeness is reasonable as it accounts for the possibility of adverse weather conditions, safety concerns, and equipment problems. In the event that a station is relocated or moved to facilitate sampling, field crews will record the GPS coordinates of the new location. This information will be recorded on the field form. # QUALITY ASSURANCE/QUALITY CONTROL Water quality samples under programs described within this Monitoring Plan are being collected in order to ensure the collection of representative water samples from the entire watershed. Babcock Laboratories will follow quality assurance and quality control programs in accordance with guidelines established by the State of California and the U.S. EPA. Laboratories are required to submit a copy of their SOPs for laboratory quality control to the Quality Assurance Officer for review and approval. Field duplicates will be collected at the rate of 5 percent of the total project sample count and analyzed blind by the analytical laboratory. Sampling equipment will be used whenever possible; sampling equipment which is reused should be decontaminated between samples. One equipment blank will be submitted for analysis (all methods) during each sampling event. All laboratory data will be entered into the project database, and will be filed in the project archives maintained by SAWPA, along with related materials such as field forms, chain of custody forms, photographs, correspondence, etc. For the first two dry weather sampling events, the Brown and Caldwell Project Manager and QA Officer will review all laboratory data and will request additional re-analysis as warranted. 23 # APPENDIX A **Sampling Forms and Example COC** # Field Equipment Calibration Form | Equipment / instrument | Calibration Description and Criteria | Pre-calibration | Post-calibration | Responsible Person | |------------------------|--------------------------------------|-----------------|------------------|--------------------| SWAMP Stati | on Occupa | tion Resul | ts | | | | | PG: OF | PGS | Entered
Dbase | |---|-------------------------------------|---------------------------------|----------------------------------|----------|----------------------------------|--|----|--|-------|------------------| | *Station
ID: | | | *Date: | | | | | | | | | *Project
ID: | | | <u>*Sample</u>
Time: | M
2 [| M D | D YY
Arrival Time: | ΥΥ | /
Departure
Time: |) | | | *Sample
Season: | | | (time of fin | | | imie. | | | | | | Event Type | Sample Type
FieldObs | SampleDepth
-88 | • | | Crew: | | | *Hab | y | | | Photos (RB & LB when facing dev | | DistanceFr
-88 | romBank |] | | | | non-wadeal
wadeable
wadeable cond | strea | m | | RB/LB/BB/
US/DS/##
RB/LB/BB/ | | Precipitation Sea Stat | | | *Sky
clear | Wind Direction
(from) / ne wind : | - | standing
other | wate | ·
 | | US/DS/## RB/LB/BB/ US/DS/## | | drizzle
rain
thunderstorm | Calm
Rough
Choppy | | partly cloudy
overcast
fog | W | | Wind Speed (kts) : | | | | *Water Color
clear
green
yellow
brown | clear clear green semi-clear turbid | | odor
sulfide
ge
um
d | 'Sed | black brown gray yellow mixed | * Sediment Composition course sand fine sand silt / clay cobble gravel mixed | | ediment Odor
none
drogen sulfide
sewage
petroleum
mixed | | | | Station Occupation Co Access key Yes / No required | omments | none | | | other | Gaging Station #: *Elevation (ft or m) : | | other | | | | Contact
Info: | | | | | | (it or iii) . | | | | | * required field; underlined fields used as primary keys in dbase **SWAMP SOFDS 1/02/2003** | SWAMP Stati | on Occupa | ition Resul | lts | | | PG: OF | PGS Dbase | |---|---|---------------------------------|--|-------------------------------------|--|---|-----------------| | *Station
ID: | | | *Date: | | | | | | *Prolect
iD:
*Sample
Season: | | | *Sample
Time:
(time of firs
sample) | M M D | D Y Y Y Arrival Time: | Departure
Time: | | | Event Type | Sample Type
FieldObs | SampleDepth
-88 | 3 | *Crew: | _ | * Habi
dry
non-wadeab | ,
ble stream | | Photos (RB & LB when facing dev | | -88 | | | | wadeable wadeable | rete channel | | RB/LB/BB/
US/DS/##
RB/LB/BB/ | | | Sea State
(if applicabl | | Wind Direction
(from) / no wind = xx | standing other | water | | US/DS/##
RB/LB/BB/
US/DS/## | | drizzie
rain
thunderstorm | Calm
Rough
Choppy | partly cloudy
overcast
fog | W-(♣) E | Wind Speed (kts): | | | *Water Color clear green yellow brown other | Color clear clear semi-clear sewage petroleum mixed | | Odor
sulfide
ge
um
d | black brown gray yellow mixed other | Composition course sand | *Sediment Odor none nydrogen sulfide sewage petroleum mixed other | | | Station Occupation Co Access key required Yes / No Contact Info: | mments | | | | Gaging Station #: *Elevation (ft or m) : | | | * required field; underlined fields used as primary keys in dbase **SWAMP SOFDS 1/02/2003** | Season: PS: OF PGS | tation | Shallow V | Vater Sa | mpling Eve | nt
<u>†Proiect</u> | 1. 1 | 1 1 | ı | I I | *Sample | | | | Ente |
--|------------------------|--|---------------------------------|--|----------------------------------|-----------------------|------------------------------------|---------------------------------------|-----------------|----------------|-------------|-------------|----------|-----------| | Sample Device: Index | | | | | 15 | | | | | | | PG: | OF F | 'GS | | The MaterTox Chem WaterTox Bottle by plead and white by pole sampler from Bridge Prom Brid | ate: | м м | D D | | | | 1 . | | | | | | | | | Starting Bank: LB / RB Starting Bank: LB / RB Starting Bank: LB / RB | aterTox_Cl
WaterChe | hem Grab | Indiv. Bott
Indiv. Bott
T | . Bottle by hand
ttle by pole sampl
tle by bucket samp
efion Tubing | Metho
er Walk
oler From Br | In Midk | cation
Bank
Channel
alweg | DGPS | | | -
- | | | sec / hui | | Depth Collect Inorganics Bacteria *Chl a/Boron *TSS DOC *Total Mercury Dissolved Total *Organics *Toxicity TIE Metals *Organics *Toxicity TIE Metals *Organics *Toxicity TIE Metals *Organics *Toxicity TIE *Organics *Toxicity TIE *Organics *Toxicity TIE *Organics *Toxicity *Toxicit | | | | • | —∣ Bar | _{ik:} ĽB / R | B Station V | (ft / m)
Nater Deptn | | *GPS
Model: | ı Width | | m I | | | Preserved In lab | amples Ta | ken (# of cont | ainers fille | d) | | | (point o | f sample | | (point of | | 1 | <u> </u> | | | Preservative Integration 48 in abase; Preserved Intab Intab | | (m) | Inorganics * | Bacteria *Chl a/Bo | ron *TSS | | I . | | | | Organics *T | oxicity TIE | ≡ | | | Integrated; 48 in debase; Preserved In lab In lab | BOTTOM
CNECHERMA | | | | | | | | | | | | | | | Sample Type Collect Distance are taken | | | | | | | | time | 1.75.75 (Sept.) | 7 TX 10 | | 7-80-91 | | | | *Depth Collect (failure of probe parameter should be marked as "probe failure") *Depth Collect (morf) | Event Type | Sample Tv: | | • | • | | | | | | | | | | | ## Prop used: AA / Mi | 17001011 | <u> </u> | Depth Collec | t Distance from | Velocity | | | pH | | | Condi | uctivity | | y | | *Instrument: *Calibration date *Calibration date *Calibration date *Meter Used: Prop used: AA / Mi | -A8
 | 50 SE THE BMC 1
BE CON
CURE MEDIATION
SCORE CHE BMC 0
BC CON | | | | | | | | | | , | | | | ample Comments: (failure of probe parameter should be marked as "probe failure") Meter Used: Prop used: AA / Mi | | E-14, THE RIM. | | *Instrument: | | | | | | | | | | + | | Prop used: AA / M | | | | *Calibration date | | | | | | | | | | | | · | ample Con | nments: (failure | of probe pa | arameter should b | e marked as "j | probe failure | 9") | | | | Meter U | sed: | | | | rev. @(sec) | | | | | | | | | | | | Prop | used: | AA / Mi | | | | | | | | | | | | | | <u> </u> | rev. @ | (sec) | 111 # C . 1 1 - 22 Z # C & E #### Stream Flow (Discharge) Measurement Form | Stream: | | | | | Date: | | | | | | | | | | | | |---|--------------------------------|--------------------|--|------------------------|--------------------------|-------------------------|--|--|--|--|--|--|--|--|--|--| | Station Desc | ription: | | | | | | | | | | | | | | | | | Time Begin: | Tin | me End: | Meter Typ | e: | | | | | | | | | | | | | | Observers:_ | | Stream Wid | dth*: Section Width: | | | | | | | | | | | | | | | Observation | ıs: | | | | | | | | | | | | | | | | | Section | | Observational | Velo | ocity | | Flow (Q) | | | | | | | | | | | | Midpoint
(ft) (m) | Section Depth
(ft) (m) (cm) | Depth**
ft-m-cm | At Point
(ft/s) (m/s) | Average
(ft/s)(m/s) | Area W x D
(ft²) (m²) | V x A
(m³/s) (ft³/s) | _ | _ | | | | | | | | | | | | | | | | | | | - | _ | _ | m ³ /s x 35.3 =ft ³ | 3/s | | Total Flow (Discharge) (3Q) (ff ³ /s) | | | | | | | | | | | | | | * Make a minimum of 10 measurements when the total width is > 5.0 ft, 20 measurements preferred. ** When water is < 2.5 ft deep take one measurement at each cross section. When water is > 2.5 ft deep, take two measurements at each cross section; one at 2 the total depth and the other at 2 x the total depth. Average the two velocity measurements. See SWAMP Procedures Manual for a detailed flow measurement method. #### E.S. Babcock & Sons, Inc. 6100 Quali Valley Court Riverside, CA 92507 (909) 853-3351 • FAX (909) 853-1662 # Chain of Custody & Sample Information Record | A SONS, NG. | | | | onta | -4. | | | | | | | | | | | | Dh | me | Na. | | | |--|-----------|-----------|-----------|---------------------------------------|-----|--------|---------|------|-----|-----------------------|------------------|---------|------|-------|-----|----------|-----|-----|-----|--|---| | Client: | | | | | | | | | | | | | | | | | FIR | ЯІВ | NO. | | (Rushes | | Project Name: | | | | ım A | ۷ro | unc | Ti | me | : | Rou | Routine 3-5 Days | | | | | 48 Hours | | | | 24 Hours | Require Approval,
Additional Charges
May Apply) | | Project Location: Sampler Information | | | | # 6 | | | | | | 1 | | | \nai | veis | Re | CUE | ste | • | | Matrix | Notes | | Name: Employer: Signature: | | · | preserved | | 달 | | Nezszos | | | Total # of Containers | | | | | | | | | | DW = Drinking Water WW = Wastewater GW = Groundwater S = Soil SG = Sludge L = Liquid | | | Sample ID | Date | Time | 5 | 꾸 | 오 | 준 : | 2 | 2 | | _ਕੁ | | \perp | Ш | | | | Ш | | | M = Miscellaneous | Relinquished By (sign) | Print Nan | ne / Corr | раг | y | | | נ | Dete | / T | ime | | | Rec | :elve | d B | y (S | gn) | | | Print Nam | ne / Company | | | | | | | | \bot | | | _ | П | ************************************* | | | | | | | | | | * | | | | | | , | of | $(\mathbf{v},\mathbf{g},\mathbf{O},\mathbf{w},\mathbf{N}): \mathbf{v}_{t} \leftarrow \mathbf{v}_{t}(\mathbf{A}) = \mathbf{O}(\mathbf{w},\mathbf{I},\mathbf{A},\mathbf{I})$ # **APPENDIX B** **Standard Operating Procedures** #### **SOP 11-4** # **Big Bear Lake Tributary Water Quality Sampling SOP and Record** #### **Tributary Water Quality Monitoring Stations** Tributary sampling stations have been established at the following locations: - Bear Creek Outlet (MWDC2) - Grout Creek (MWDC3); - Rathbun Creek @ Sandalwood (MWDC4); - Rathbun Creek below Zoo (MWD -) - West Summit Creek (MWDC5); - Knickerbocker Creek at Hwy. 18 (MWDC8);and, - Boulder Creek at Hwy. 18 (MWDC13). The tributaries will be sampled in accordance with flow status (i.e., baseline, snow melt, and storm event) as described below. Boulder Creek (MWDC13) will serve as a "reference tributary" for water quality monitoring purposes. The other tributaries, Grout Bay Creek, Rathbun Creek, West Summit Creek, and Knickerbocker Creek were 303d listed by the Regional Water Quality Control Board. These 303d listed tributaries are considered impaired water bodies and, therefore, are the primary focus of sampling activities. In addition to actual water quality
sampling, primary tributary sampling locations will be visually monitored at a frequency of no less than once every two weeks on a year round basis for the duration of this project. Tributary visual monitoring activities consist of completing the tributary monitoring form attached to this SOP (Form SOP 11-4). #### **Tributary Flow Type and Sampling Frequency** In the Big Bear Lake watershed, water flowing in tributaries (or flow type) is most likely the result of one or a combination of the following: - Baseflow (spring fed flow); - Snow Melt; and, - Storm Event (rain precipitation). It is extremely important to clearly note in the field logbook and the chain-of-custody, the type of flow (or nature of the discharge) that was sampled. Tributary sampling frequency and sampling approach is dependent on the type of flow event and the time of year. Sampling in accordance with flow status is described in the Tributary Monitoring Plan for this effort. #### **Manual Tributary WQ Sampling Procedures** Field measurements and water quality samples will generally be taken at the centroid of the flow. The centroid of the stream is defined as the midpoint of that portion of the stream width that contains 50% of the total flow. If a primary flow measurement device, such as a compound weir with a v-notch is available, then sample on the downstream side of the v-notch weir, just at the weir outlet. The Surface Water Ambient Monitoring Program (SWAMP) Quality Assurance Management Plan, Field Collection of Water Samples and Procedures for Conducting Routine Field Measurements in SWAMP, are a part of this SOP. In accordance with SWAMP specifications, manual water quality samples and field measurements will be collected at the following depths in the stream: Since tributary water depth in the Big Bear is generally less than 5 feet (1.5 m), then manual grab samples for water quality will be collected at approximately 4.0 inches (0.1 m) below the water surface. Horiba U-10 sensor measurements and/or grab samples from which water quality field measurements will be taken at approximately 8.0 inches (0.2) below the water surface. Ideally, field measurements should be collected directly in-stream. However, when an in-stream measurement cannot be made, it can be measured in a bucket (Nalgene or plastic). The project managers responsible for the sampling activities shall be notified of any problems encountered during the sampling activities (logistics, sampler malfunction, etc.). #### Field Sequence - Water Quality Sampling - Set GPS to collect data in decimal degrees to 5 digits with datum NAD83. - Calibrate Horiba U-10 mulit-parameter probe according to SOP 16-1. Record pre- and post-calibration data on form. - After reaching sample site, record parameters on field sheet. - Record flow on stream discharge measurement form - Collect a sample for field parameters (wearing gloves), using a clean bucket or spare bottle. Record all field parameters using Horiba U-10 - Collect grab samples (wearing gloves) and label bottles using sample numbering method described in Section 4.5 of MP - Take one duplicate sample after every 20 samples duplicate samples will not be labeled as "duplicate" but will be labeled using sample numbering method described in Section 4.5 of Monitoring Plan, followed by X, to ensure they are analyzed blind by the laboratory. - Collect one equipment blank sample from one location per sampling event (to be analyzed for all constituents). Blank samples will not be labeled as "blank" but will be labeled using sample numbering method described in Section 4.5 of Monitoring Plan, followed by Z, to ensure they are analyzed blind by the laboratory. - Complete chain of custody forms as described in Section 4.6.2 of Monitoring Plan. Place samples in a cooler on ice for transport to the analytical laboratory. - Deliver samples to the laboratory in time to meet the shortest holding time for the analyses being conducted. #### **SOP 15-1** #### Big Bear Lake Horiba Instrument Maintenance SOP and Record The primary instrument to be utilized for field data measurements is the Horiba U-10 multi-parameter sonde with a LCD display. All field staff will acquaint themselves with the details of operation and maintenance as per the manufacturer's specifications. While the U-10 is both rugged and precise, the key to accurate measurements is cleanliness and frequent calibration. Prior to each use, inspect the Horiba instrument to ensure all components are clean and in good working order. Also inspect the display batteries that power both the display unit and the sonde. Note: Document all Horiba maintenance activities on the appropriate record forms contained, and to be kept, within the Horiba carrying case. #### **Monthly Horiba Maintenance** - 1. Three of the U-10's sensors are replaceable: the pH sensor, the reference sensor and the dissolved oxygen (DO) sensor. They are simple to maintain, with the pH and DO sensor needing only a tap water flush. - 2. Recharge the reference sensor with reference solution about once every two months as follows: - a. Remove the liquid-junction rubber cap from the reference sensor and pour out the old solution. - b. Fill the reference sensor completely with new reference solution. Make sure that there are no air bubbles present. Replace the liquid-junction rubber cap and carefully wash off all excess reference solution from the probe. - 3. Inspect the turbidity and conductivity sensors. When needed, clean the sensors with a test tube brush. Never use abrasives or cleansers. - 4. Ensure that the display is kept clean and dry. Check the batteries. Protect the display unit from excessive heat by keeping the unit in the carrying case. Do not store the unit or carrying case where it may be exposed to direct sunlight for prolonged period of time. Never leave the U-10 inside a vehicle with the windows closed. - 5. Check to see that cables and connectors are in good working order. #### Horiba Maintenance - After Event Measurement 1. Wash the probe thoroughly with tap water. Be sure to flush off the entire sample solution from the probe. #### Short-Term Storage Guidelines (i.e., about 1 week or less) No matter what sensors are installed in the Horiba meter, it is important to keep them moist. Horiba recommends that short-term storage of the instrument sonde be done by executing the following steps: - 1. Fill the calibration cup with tap water and fit the probe over it; - 2. The calibration cup is placed in the carrying case to minimize evaporation; and - 3. Check the calibration cup periodically to ensure that tap water is still present. #### **Long-Term Storage Guidelines** Long-term storage of the Horiba meter is not anticipated for the next two to three years. - 1. The pH sensor must always be kept moist. Fill the small rubber cap with water and use it to cover the pH sensor. - 2. The KCI internal solution in the reference sensor may seep over time. Place vinyl tape around the O-ring portion to prevent this. - 3. Remove the battery from the main unit. #### **SOP 16-1** #### Big Bear Lake Horiba Instrument Calibration SOP and Record #### **General Information** The primary instrument for field data measurements is the Horiba U-10 multi-parameter sonde with an LCD display. An energy-saving function switches the instrument off automatically any time 30 minutes pass without any key being pressed. As the U-10 is powered by a standard 9-V battery, a spare should be kept within the carrying case. All pre- and post-calibration should be recorded in the calibration form provided in the MP. Calibration procedures provided herein include the following parameters: - Dissolved Oxygen (DO); - pH; - Conductivity (COND); and - Turbidity (TURB) Note: Sampling staff and instrument operators shall refer to the operations manual if additional information on instrument calibrations and/or maintenance is needed. Record all calibration activities on the appropriate record forms contained, and to be kept, within the Horiba carrying case. #### **Monthly Horiba Calibration** - 1. The U-10 may be calibrated either manually or automatically. The auto-calibration procedure is extremely simple. The Horiba uses just a single solution, dubbed Water Checker, to do a simultaneous calibration of the four parameters: pH, COND, TURB, and DO. - a. Simply fill the calibration cup with the standard phthalate pH solution to the noted line (near two-thirds full) and fit the probe over it. - b. With the power on, press the MODE key to put the unit into the MAINT mode. The lower cursor should be on the AUTO Sub-mode; if it is not, use the MODE key to move the lower cursor to AUTO. - c. With the lower cursor on AUTO, press the ENT key. The readout should display CAL. Wait a moment, and the upper cursor will gradually move across the four parameters. - d. When the auto-calibration process is complete, the readout will briefly show End and then will switch to the MEAS mode. Additionally, the upper cursor will blink while the auto-calibration is being made. When the auto-calibration has stabilized, the upper cursor will stop blinking. #### Initial Manual (2-point) calibration for the pH Sensor Given the more alkaline nature of Big Bear Lake water, the pH sensor for the Horiba U-10 meter should be manually calibrated with standard commercially available buffers of pH 7 and pH 10 for a higher accuracy measurement. A two-point calibration is performed. The pH buffers contain high concentrations of phosphate. Therefore, care must be taken to ensure that no traces of standard buffers remain on the instrument probes that could contaminate water samples. Buffer solutions must be replaced prior to their expiration date. #### Preparation: 1. Wash the probe 2-3 times using de-ionized or distilled water. #### Two-Point Calibration Steps: #### A.) Zero calibration - 1. Use the pH 7 solution for zero calibration. Place enough pH 7 standard buffer into a clean, dry calibration
cup to immerse the pH sensor. Allow at least one minute for the temperature to equilibrate before reading. - 2. With the power on, press the MODE key till the lower cursor is on ZERO. - 3. Use the SELECT key to move the upper cursor to pH. - 4. Once the readout has stabilized, use the UP/DOWN keys to set the proper value of pH 7 standard solution at the temperature of the sample. Refer to the manufacture's guidelines for actual pH vales of the standard solution at various temperatures. - 5. After the reading has stabilized, press the ENT key to confirm the ZERO calibration for pH. #### B.) Span calibration - 1. Use the pH 10 solution for span calibration. Place enough pH 10 standard buffer into a clean, dry calibration cup to immerse the pH sensor. Allow at least one minute for the temperature to equilibrate before reading. - 2. With the power on, press the MODE key till the lower cursor is on SPAN. - 3. Confirm that the upper cursor is set to pH. If not, Use the SELECT key to move the upper cursor to pH. - 4. As in step 5 above in the zero calibration, when the readout has stabilized, use the UP/DOWN keys to set the proper value of pH 10 standard solution at the temperature of the sample. Again, refer to the manufacture's guidelines for actual pH vales of the standard solution at various temperatures. - 5. After the reading has stabilized, press the ENT key to complete the calibration for pH.